\(\cos \alpha + \cos \beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\)
\(\sin \alpha + \sin \beta = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\)
\(\cos \alpha - \cos \beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)\)
\(\sin \alpha - \sin \beta = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)\)
\(\tan \alpha + \tan \beta = \dfrac{\sin\left(\alpha+\beta\right)}{\cos \alpha \cos \beta}\)
\(\tan \alpha - \tan \beta = \dfrac{\sin\left(\alpha-\beta\right)}{\cos \alpha \cos \beta}\)