puissances

Recherche

Voici les résultats de votre recherche.

Les fonctions exponentielles @analyse:fonctions:exponentielles_logarithmes
4 Occurrences trouvées, Dernière modification :
s_logarithmes:exponentielles:exercices:proprietes_puissances|Propriétés des puissances : exercices de révision]] * [[analyse:fonctions:exponentielles_logarithmes:expone... 41116.png?350}} </columns> ===== Propriétés des puissances ===== Quelques règles fondamentales qui s'appliqu... WRAP list-deep> - si a était négatif, certaines puissances de a n'existeraient pas : $f(x)=(-2)^x$ n'est pas
Lexique mathématique
2 Occurrences trouvées, Dernière modification :
ier $n$ positif non nul, on définit les [[algebre:puissances|puissances]] de $a$ par \(a^n = a \times a \times ... \times a\) ($n$ facteurs égaux à $a$)\\ Pour tout nomb
Le programme de la rhéto math 6h @acquis_d_apprentissage
2 Occurrences trouvées, Dernière modification :
ance des fonctions exponentielles, logarithmes et puissances sur \(\mathbb{R}_0^+\) * Justifier les étapes d... ours à des fonctions exponentielles, logarithmes, puissances. * Résoudre un problème nécessitant le recours
Prérequis d'Algèbre @algebre
2 Occurrences trouvées, Dernière modification :
> <box 420px left round orange|**Propriétés des puissances** > Pour tout nombre entier $n$ positif non nul, ... ox> <box 420px left round blue|**Propriétés des puissances** > On considère deux nombres entiers relatifs $n
Exponentielles et Logarithmes @analyse:fonctions
2 Occurrences trouvées, Dernière modification :
ance des fonctions exponentielles, logarithmes et puissances sur \(\mathbb{R}^+\) * justifier les étapes de ... ours à des fonctions exponentielles, logarithmes, puissances * résoudre un problème nécessitant le recours à
Techniques d'intégration @analyse:integrales
2 Occurrences trouvées, Dernière modification :
t|}+C \end{align*} </box> ===== Intégration des puissances supérieures de sinus et cosinus ===== pour intégr... eft(1-\cos{2x}\right)\cr \end{eqnarray*} Pour des puissances supérieures à deux, vous pouvez réduire la puissa
Échelles logarithmique et semi-logarithmique @analyse:fonctions:exponentielles_logarithmes:logarithmes
2 Occurrences trouvées, Dernière modification :
ver que la représentation graphique des fonctions puissances, exponentielles et logarithmiques est une droite,... sur cette échelle logarithmique représentent des puissances consécutives de 10 (10 correspond à 1 unité, 100
Journal de classe 2014-2015 @agenda
1 Occurrences trouvées, Dernière modification :
39 - 19:39 * **CH2 : Nombres Complexes** * Puissances d'un nombre complexe et formule de Moivre (on dev
Schéma de Hörner @algebre
1 Occurrences trouvées, Dernière modification :
s termes du polynôme dans l'ordre décroissant des puissances de \(x\).\\ - **Mettre le polynôme en tableau**
Les démonstrations du chapitre sur les nombres complexes @algebre:nombres-complexes
1 Occurrences trouvées, Dernière modification :
_moivre|Théorème de De Moivre]] : liens entre les puissances de nombres complexes les représentations trigonom
Variations et monotonie @algebre:suites-numeriques
1 Occurrences trouvées, Dernière modification :
cdot (n+1)} = \frac{2n}{n+1} \] Dans ce cas, les puissances de 2 se simplifient, et le rapport entre deux ter
Développements limités : Taylor - MacLaurin @pesam:6eme_renf_math
1 Occurrences trouvées, Dernière modification :
calculer les valeurs des fonctions, les séries de puissances fournissent une façon de calculer des intégrales
Opérations et Formes algébriques dans \(\mathbb{C}\) @algebre:nombres-complexes:forme-algebrique
1 Occurrences trouvées, Dernière modification :
s la théorie]] <WRAP formalbox> **Exercice 1 :** Puissances de $\mathbf{i}$ -- Exprimez chacun des nombres su
Opérations @algebre:nombres-complexes:forme-trigonometrique
1 Occurrences trouvées, Dernière modification :
in \left(k \theta\right) \end{aligned}} $$ ===== Puissances ===== <WRAP nicebox blue> Soit \( z = |z| \cdot
Exercices étude de la monotonie @algebre:suites-numeriques:variations
1 Occurrences trouvées, Dernière modification :
_0 ~:~u_{n} >0$ et $u_n$ est une quotient de deux puissances : on compare $\frac{u_{n+1}}{u_{n}}$ à $1$ $$ \fr
L'identité d'Euler @pesam:6eme_renf_math:taylor_maclaurin
1 Occurrences trouvées, Dernière modification :