6ème math 6h 09 octobre 2024

Si f est dérivable on note f' sa dérivée. Si l'on souhaite dériver une quantité qui n'a pas de nom, on utilise la notation différentielle. On écrira ainsi $\cos'(x)$ ou $\frac{d}{dx}(3x+2)$.

Pour calculer une dérivée on se sert :

- des dérivées des fonctions de référence (qu'il faut connaître parfaitement).
- des formules de dérivation :

$$(f+g)' = f' + g'$$

$$(f \times g)' = f' \times g + f \times g'$$

$$(\frac{f}{g})' = \frac{f' \times g - f \times g'}{g^2}$$

• On peut également dériver une composée de fonctions dérivables avec la formule :

$$(f \circ g)' = (f' \circ g) \times g'$$

ou encore : $(f \circ g)(x) \stackrel{\text{def.}}{=} f(g(x))$ et $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$

Exercices

Calculer la dérivée première des fonctions suivantes. Factoriser / Simplifier l'expression obtenue le plus loin possible. **Obligatoire à partir du (f)**.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \sqrt{2x^2 - 4x + 2}$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{2x-2}{\sqrt{2x^2-4x+2}}$

(b)
$$f: \mathbb{R} \to \mathbb{R}$$
; $t \mapsto (2t-1) \cdot \sqrt{1-4t}$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $t \mapsto \frac{4(1-3t)}{\sqrt{1-4t}}$

(c)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto x \cdot \sqrt{x^2 + x + 1}$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{4x^2 + 3x + 2}{2\sqrt{x^2 + x + 1}}$

(d)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \sqrt[3]{3x^2 + x + 1}$

Solution:
$$f': \mathbb{R} \to \mathbb{R} ; x \mapsto \frac{6x+1}{3\sqrt[3]{(3x^2+x+1)^2}}$$

(e)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \sqrt{(x-2)(1-x)}$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{-2x+3}{2\sqrt{(x-2)(1-x)}}$

(f)
$$f: \mathbb{R} \to \mathbb{R}; x \mapsto x^3 \cdot \sin(x^2)$$

Solution:
$$f'(x) = [x^3]' \cdot \sin(x^2) + x^3 \cdot [\sin(x^2)]'$$

 $= 3x^2 \cdot \sin(x^2) + x^3 \cdot \cos(x^2) \cdot [x^2]'$
 $= 3x^2 \sin(x^2) + 2x^4 \cos(x^2)$
 $= x^2 (3\sin(x^2) + 2x^2 \cos(x^2))$

(g)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto 5x^3 \sin x$

Solution: Sortir la constante multiplicative : $(a \cdot f)' = a \cdot f' \implies 5(x^3 \sin(x))'$

Appliquer la règle du produit : $(f \cdot g)' = f' \cdot g + f \cdot g'$

Finalement: $f': \mathbb{R} \to \mathbb{R}$; $x \mapsto 5x^2 (3\sin(x) + x\cos(x))$

(h)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{\cos x}{1 - \sin x}$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{1}{1 - \sin x}$

(i)
$$f: \mathbb{R} \to \mathbb{R}$$
; $\theta \mapsto \sqrt{\tan \theta}$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{1 + \tan^2 \theta}{2\sqrt{\tan \theta}}$ ou $f': \mathbb{R} \to \mathbb{R}$; $x \mapsto \frac{1}{2\cos^2 \theta \sqrt{\tan \theta}}$

(j)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto (2\cos(7x) + 3\sin(7x))^2$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto 2(2\cos(7x) + 3\sin(7x))(-14\sin(7x) + 21\cos(7x))$

(k)
$$f: \mathbb{R} \to \mathbb{R}$$
; $\phi \mapsto \tan^2(n\phi)$ avec $n \in \mathbb{N}_0$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $\phi \mapsto 2n \cdot \tan(n\phi) \left(1 + \tan^2(n\phi)\right)$

ou
$$f': \mathbb{R} \to \mathbb{R}$$
; $\phi \mapsto \frac{2n \cdot \tan(n\phi)}{\cos^2(n\phi)}$

(l)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \sin(4x) \tan(4x)$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{4\sin 4x \left(\cos^2 4x + 1\right)}{\cos^2 4x}$
ou bien $f': \mathbb{R} \to \mathbb{R}$; $x \mapsto 4\tan^2(4x)\sin(4x) + 4\tan(4x)\cos(4x) + 4\sin(4x)$

ou bien
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto 4 \tan^2(4x) \sin(4x) + 4 \tan(4x) \cos(4x) + 4 \sin(4x)$

(m)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{4x}{5 - \tan x}$

Solution:
$$f': \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{4x \tan^2(x) - 4 \tan(x) + 4x + 20}{(5 - \tan x)^2}$

(n)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{\cos(6x)}{1 - \sin(6x)}$

(n)
$$f: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{\cos(6x)}{1 - \sin(6x)}$$

Solution: $f': \mathbb{R} \to \mathbb{R}; x \mapsto \frac{6}{1 - \sin(6x)}$

(o)
$$f: \mathbb{R} \to \mathbb{R}$$
; $t \mapsto \frac{t \sin t}{2 + 5t}$

Solution:

Solution:

$$f'(t) = \frac{(\sin t + t \cos t)(2 + 5t) - (t \sin t)(5)}{(2 + 5t)^2}$$

$$= \frac{2\sin t + 5t \sin t + 2t \cos t + 5t^2 \cos t - 5t \sin t}{(2 + 5t)^2}$$

$$= \frac{5t^2 \cos t + 2t \cos t + 2\sin t}{(2 + 5t)^2}$$

$$= \frac{(5t^2 + 2t) \cos t + 2\sin t}{(2 + 5t)^2}.$$
(p) $f: \mathbb{R} \to \mathbb{R}$; $x \mapsto \frac{\cos x}{4x^2}$

(p)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \frac{\cos x}{4x^2}$

Solution: $f': \mathbb{R} \to \mathbb{R}; x \mapsto$ (q) $f: \mathbb{R} \to \mathbb{R}; x \mapsto \sin^3(x^2 - \sin x)$ Solution: $f': \mathbb{R} \to \mathbb{R}; x \mapsto 3(2x - \cos x) \cdot \sin^2(x^2 - \sin x) \cdot \cos(x^2 - \sin x)$