6ème math 6h 22 septembre 2024

Exploration des Domaines d'Existence des Fonctions Cyclométriques

Rappels:

- domaines : dom (arcsin) = dom (arccos) = [-1, 1] et dom (arctan) = \mathbb{R}
- racines: $\arcsin x = 0 \iff x = 0$, $\arccos x = 0 \iff x = 1$ et $\arctan x = 0 \iff x = 0$

Méthode par l'exemple :

— Pour rechercher le *domaine de définition* de $f: x \mapsto \arccos(1-x^2)$, il suffit de poser la condition d'existence suivante

$$-1 \le 1 - x^2 \le 1$$

Cette double inéquation se décompose en deux inéquations simples, formant le système suivant :

$$\begin{cases} 1 - x^2 \ge -1 \\ 1 - x^2 \le 1 \end{cases}$$

Pour résoudre ce système, nous examinons chaque inéquation individuellement.

1.
$$1 - x^2 \ge -1 \iff 2 - x^2 \ge 0 \iff x \in \left[-\sqrt{2}; \sqrt{2}\right]$$
 $TS = \text{Tab}$

TS = Tableau de signes

2.
$$1 - x^2 \le 1 \iff -x^2 \le 0 \iff x^2 \ge 0 \iff x \in \mathbb{R}$$

Ces deux conditions doivent être rencontrées en même temps : $x \in [-\sqrt{2}; \sqrt{2}] \cap \mathbb{R}$ Finalement, dom $f = [-\sqrt{2}; \sqrt{2}]$

— Pour rechercher les racines éventuelles de f:

$$\arccos(1-x^2) = 0 \stackrel{\text{rappels}}{\iff} 1-x^2 = 1 \iff x^2 = 0 \iff x = 0$$

Déterminer les domaines de définition dom f et de continuité dom $_c$ f des fonctions cyclométriques suivantes. Rechercher également les racines éventuelles.

Remarque: toutes les fonctions reprisent ici sont continues sur leur domaine d'existence. Donc $dom_c f = dom f$ (le domaine de continuité de la fonction est identique à son domaine d'existence).

(a) $f: x \mapsto \arcsin(1-2x)$

Solution: CE:
$$-1 \le 1 - 2x \le 1 \implies \text{dom } f = [0;1] \text{ et dom}_{\mathcal{C}} f = [0;1]$$
 racine de f : $\arcsin(1-2x) = 0 \iff 1-2x = 0 \iff x = \frac{1}{2}$

(b) $f: x \mapsto \arccos(2x+3)$

Solution: CE: $-1 \le 2x + 3 \le 1 \implies \text{dom } f = [-2; -1] \text{ et dom}_c f = [-2; -1]$ racine de f: $\text{arccos}(2x + 3) = 0 \iff 2x + 3 = 1 \iff x = -1$

(c) $f: x \mapsto \arctan\left(\frac{x-1}{x+1}\right)$

Solution: dom $f = \text{dom}_c$ $f = \mathbb{R} \setminus \{-1\}$ racine de f: arctan $\left(\frac{x-1}{x+1}\right) = 0 \iff \frac{x-1}{x+1} = 0 \iff x-1 = 0 \iff x = 1$

(d) $f: x \mapsto \arcsin(x^2 - 2x)$

Solution: CE: $-1 \le x^2 - 2x \le 1 \implies \text{dom } f = \left[1 - \sqrt{2}; 1 + \sqrt{2}\right] \text{ et dom}_c f = \left[1 - \sqrt{2}; 1 + \sqrt{2}\right]$ racines de f: $\text{arcsin}\left(x^2 - 2x\right) \iff x^2 - 2x = 0 \iff x = 0 \text{ ou } x = 2$

(e)
$$f: x \mapsto \arccos(1-2x-x^2)$$

Solution: Énoncé du devoir.

(f)
$$f: x \mapsto \frac{\arccos \frac{x}{2}}{\arctan x}$$

Solution: CE:
$$-1 \le \frac{x}{2} \le 1 \iff -2 \le x \le 2$$

et
$$\arctan x \neq 0 \iff x \neq 0$$

domaine de défintion : dom
$$f = [-2;2] \setminus \{0\}$$

pour les racines de la fonction, il faut résoudre $\arccos\left(\frac{x}{2}\right) = 0$

rappel:
$$\arccos x = 0 \iff x = 1$$

$$\arccos\left(\frac{x}{2}\right) = 0 \iff \frac{x}{2} = 1 \iff x = 2$$

La fonction f admet une seule racine : x = 2

(g)
$$f: \mathbb{R} \to \mathbb{R}$$
; $x \mapsto \arccos(2x^2 - x)$

Solution: CE:
$$\begin{cases} 2x^2 - x - 1 \le 0 \\ 2x^2 - x + 1 \ge 0 \end{cases} \iff \begin{cases} x \in [-1/2; 1] \\ x \in \mathbb{R} \end{cases}$$
 d'où **dom** $f = \left[-\frac{1}{2}; 1 \right]$

racine de
$$f : x = -1/2$$
 ou $x = 1$

2 Quelle est le domaine de définition de $f : \mathbb{R} \to \mathbb{R}$; $x \mapsto \arcsin(1 - \arccos x)$? Les bornes du domaine seront données au millième près.

Solution: CE:
$$-1 \le 1 - \arccos x \le 1$$
 et $-1 \le x \le 1$

$$-1 \le 1 - \arccos x \le 1 \iff -2 \le -\arccos x \le 0$$

$$\iff 0 \le \arccos x \le 2 \ (<\pi)$$

$$\iff \cos(0) \ge x \ge \cos(2)$$
 (*)

$$\iff \cos(2) \le x \le \cos(0)$$

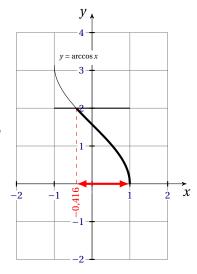
(car arccos est décroissante)

$$\iff \cos(2) \le x \le 1$$

Comme
$$-1 < \cos(2) < 0$$
, dom $f = [\cos(2); 1]$ avec $\cos(2) \approx -0.416$

Un dessin est plus simple pour comprendre le changement de sens des inégalités (*).

On trace $\arccos x$ et on dessine les droites d'équation y = 2 et y = 0. Puis on analyse le graphe.



3 DEVOIR : Déterminer le domaine de définition et de continuité ainsi que les racines de

$$f: x \mapsto \arccos(1 - 2x - x^2)$$