Croissance et décroissance exponentielle

F. Lancereau

5 janvier 2025

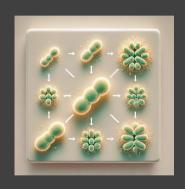
Introduction

On parle de phénomène exponentiel pour :

- la croissance de populations, par exemple des bactéries;
- la désintégration radioactive;
- la diffusion d'informations sur Internet et les réseaux sociaux;
- la propagation d'épidémies.

La croissance des bactéries

- **Division rapide :** Les bactéries se multiplient rapidement dans des conditions idéales.
- Croissance exponentielle: Une bactérie devient 2, puis 4, puis 8, formant une progression géométrique.
- Accélération continue : La vitesse de croissance reflète un *modèle exponentiel*.



La désintégration radioactive

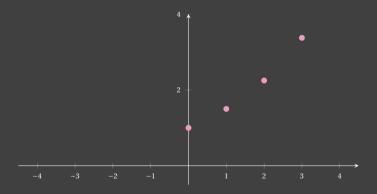
- **Processus spontané :** Les atomes radioactifs se désintègrent en éléments plus stables.
- **Diminution exponentielle :** La quantité diminue selon une *loi exponentielle*.
- **Temps de demi-vie :** Temps nécessaire pour que la moitié des atomes se désintègrent.

Diffusion d'informations sur Internet

- Taux de reproduction : Chaque partage multiplie l'audience, créant une propagation en chaîne.
- Croissance exponentielle: La diffusion suit un modèle exponentiel où la croissance est rapide.

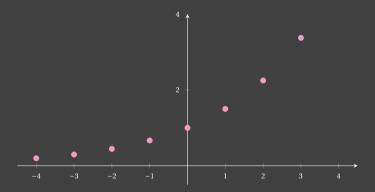


La fonction $f: \mathbb{N} \to \mathbb{R}$; $x \mapsto 1,5^x$

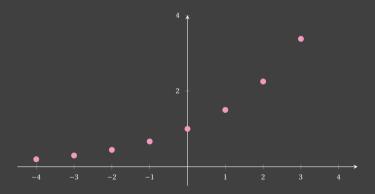


rappel : suite géométrique

La fonction $f: \mathbb{Z} \to \mathbb{R}$; $x \mapsto 1,5^x$

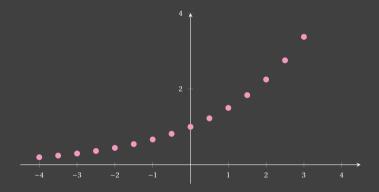


La fonction $f: \mathbb{Z} \to \mathbb{R}$; $x \mapsto 1,5^x$

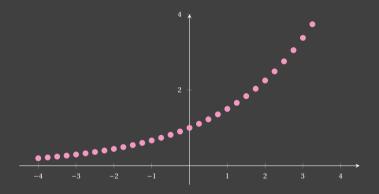


on prolonge dans les entiers naturels négatifs

La fonction $f: \mathbb{Q} \to \mathbb{R}$; $x \mapsto 1,5^x$

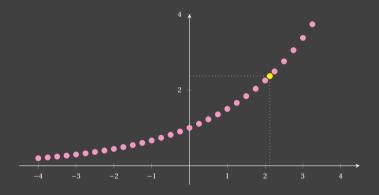


La fonction $f: \mathbb{Q} \to \mathbb{R}$; $x \mapsto 1,5^x$



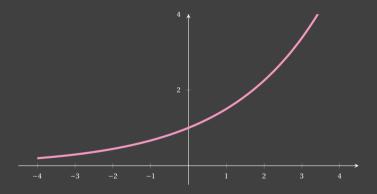
on continue de plus belle dans les rationnels : ex. $1,5^{2,125} \approx 2,367$

La fonction $f: \mathbb{Q} \to \mathbb{R}$; $x \mapsto 1,5^x$

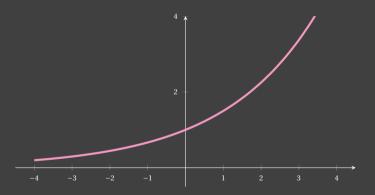


on continue de plus belle dans les rationnels : ex. $1,5^{2,125} \approx 2,367$

La fonction $f : \mathbb{R} \to \mathbb{R}$; $x \mapsto 1,5^x$



La fonction $f : \mathbb{R} \to \mathbb{R}$; $x \mapsto 1,5^x$



on prolonge enfin cette fonction dans $\ensuremath{\mathbb{R}}$

Définition

Toute fonction $f_a: \mathbb{Q} \to \mathbb{R}$; $x \mapsto a^x$ pour laquelle a est un réel strictement positif, distinct de 1, se prolonge de façon unique en une fonction

$$\exp_a : \mathbb{R} \to \mathbb{R} : x \mapsto a^x$$

Définition

Toute fonction $f_a: \mathbb{Q} \to \mathbb{R}$; $x \mapsto a^x$ pour laquelle a est un réel strictement positif, distinct de 1, se prolonge de façon unique en une fonction

$$\exp_a : \mathbb{R} \to \mathbb{R} : x \mapsto a^x$$

telle que:

- $a^{x+y} = a^x \cdot a^y$ et $(a^x)^y = a^{x \cdot y}$ pour tout réels x et y;
- la fonction est continue et dérivable en tout réel.

pour a réel strictement positif différent de 1

$$\exp_a: \mathbb{R} \longrightarrow \mathbb{R}; x \longmapsto a^x$$

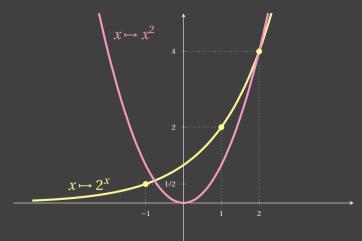
Lorsque a est un réel strictement positif, distinct de 1, cette fonction porte le nom de fonction exponentielle de base a, et on la note \exp_a avec $\exp_a(x) = a^x$.

Exemples

- 1. Fonction exponentielle de base 2 : $\exp_2 : \mathbb{R} \longrightarrow \mathbb{R}$; $x \longmapsto 2^x$
- 2. Fonction exponentielle de base $\frac{1}{2}$: $\exp_{\frac{1}{2}}$: $\mathbb{R} \longrightarrow \mathbb{R}$; $x \longmapsto 0,5^x$

Ne pas confondre...

avec une fonction puissance de x



Voici plusieurs propriétés de la fonction exponentielle :

- La fonction \exp_a est strictement croissante (resp. strictement décroissante) lorsque a > 1 (resp. 0 < a < 1).
- Le graphe cartésien de la fonction \exp_a comprend toujours le point (0,1).
- Propriétés d'injectivité et d'ordre :

$$\exp_{a} x = \exp_{a} y \iff x = y$$

$$\exp_{a} x < \exp_{a} y \iff \begin{cases} x < y, & \text{si } a > 1, \\ x > y, & \text{si } 0 < a < 1. \end{cases}$$

Voici d'autres propriétés très importantes :

• La dérivée de toute fonction exponentielle est un multiple d'elle-même :

$$(\exp_a x)' = k \exp_a x$$

- La fonction \exp_a est strictement croissante (resp. strictement décroissante) lorsque k > 0 (resp. k < 0).
- Lorsque a > 1:

$$\lim_{x \to -\infty} \exp_a x = 0 \quad \text{et} \quad \lim_{x \to +\infty} \exp_a x = +\infty.$$

• Lorsque 0 < a < 1:

$$\lim_{x\to -\infty} \exp_a x = +\infty \quad \text{et} \quad \lim_{x\to +\infty} \exp_a x = 0.$$