6ème math 6h 08 ianvier 2025

1 Calculer:

(c)
$$\log_8 \frac{3}{64} + \log_8 \frac{1}{3} = \dots$$
 (g) $\log_3 9^{35} = \dots$

2 Sachant que $a \in \mathbb{R}_0^+ \setminus \{1\}$, déterminez les logarithmes suivants :

(a)
$$\log_a a^3$$

(c)
$$\log_a \frac{1}{a^2}$$

(e)
$$\log_a \frac{1}{\sqrt[4]{a}}$$

(b)
$$\log_a \sqrt{a}$$

(d)
$$\log_a \sqrt[3]{a^5}$$

(f)
$$\log_a \frac{1}{a^2 \sqrt[4]{a}}$$

- **3** En utilisant les propriétés des logarithmes, calculer sans calculatrice $\log_5\left(\frac{\sqrt[3]{5}}{25}\right)$
- 4 En utilisant les lois des logarithmes, simplifie l'expression suivante :

$$\log_4(6x^2) + \log_4(9xy) - \log_4(2y)$$

- **5** Utilisez les propriétés des logarithmes pour développer $\log_6 \left(\frac{216}{x^3 y}\right)^4$ (avec $x, y \in \mathbb{R}_0^+$) La réponse attendue contiendra une somme de trois termes dont deux faisant intervenir $\log_6 x$ et $\log_6 y$ à un facteur multiplicatif près.
- **6** Si $\log_a x^2 = 0.6$, trouve la valeur de $\log_a \sqrt{x}$.
- Si $\log_a M = x$ et $\log_b M = y$, prouve que $\log_{ab} M = \frac{xy}{x+y}$.
- **8** Si $\log_h 2 = p, \log_h 3 = q$ et $\log_h 5 = r$, trouve $\log_h \left(\frac{50}{27}\right)$ en termes de p, q, et r.
- Sachant que a > 1, t > 0, s > 0 et que $\log_a(t^3) = p$, $\log_{\sqrt{a}}(s^2) = q$, exprimer $\log_a(st)$ uniquement en fonction de p et q.
- **10** Résolvez les équations suivantes d'inconnue x ($a \in \mathbb{R}_0^+ \setminus \{1\}$):

(a)
$$\log_x 125 = 3$$

(c)
$$\log_x a = 1$$

(e)
$$\log_x 2 = -2$$

(b)
$$\log_2 x = 7$$

(c)
$$\log_x a = 1$$
 (e) $\log_x 2 = -2$ (d) $\log 10^{-12} = x - 1$ (f) $\log_3 (x^2 + 1) = 2$

(f)
$$\log_3(x^2+1) = 2$$

III Résoudre dans \mathbb{R} : (n'oubliez pas les CE!)

(a)
$$\log_{0,3} x = 1$$

(e)
$$\log_3 (1-3^x) = x + \log_3 4$$

(b)
$$\log x = -2$$

$$(f) \log(1-\log x)-2=0$$

(c)
$$\log_2(x-3) + \log_2 x = 2$$

(g)
$$\log_{3/5}(x+1) \ge 2$$

(d)
$$\log_8(x-5) + \log_8(x+2) = 1$$

(h)
$$\log_{\frac{1}{3}} \left(\frac{1-x^2}{x} \right) < \log_3(x)$$

- Les fonctions $f: x \mapsto \log(x-1) \log(x+4)$ et $g: x \mapsto \log\left(\frac{x-1}{x+4}\right)$ sont-elles égales? Rappel: Deux fonctions sont égales lorsque leurs expressions analytiques ET leurs domaines de définition sont égaux.
- **13** Rechercher le domaine de définition de la fonction $f : \mathbb{R} \to \mathbb{R}$; $x \mapsto \log_x (1 x^2)$.