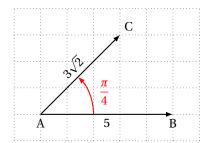
Produit scalaire et trigonométrie

Définition

Le produit scalaire de \vec{u} et \vec{v} est défini par $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$.

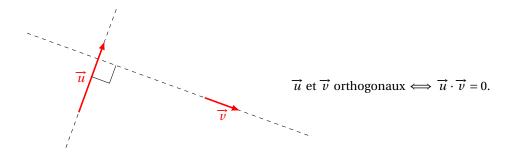
Notation: $\theta = (\vec{u}, \vec{v})$ est l'angle formé par les deux vecteurs.

Il existe d'autres manières d'exprimer le produit scalaire : $\overrightarrow{AB} \cdot \overrightarrow{CD} = AB \times CD \times \cos \left(\overrightarrow{\overrightarrow{AB}, \overrightarrow{CD}} \right)$



$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos\left(\widehat{\overrightarrow{AB}, \overrightarrow{AC}}\right)$$
$$= 5 \times 3\sqrt{2} \times \cos\frac{\pi}{4}$$
$$= 15\sqrt{2} \times \frac{\sqrt{2}}{2}$$

En général, le produit scalaire n'a pas de signification géométrique particulière, sauf lorsqu'il s'agit de l'orthogonalité entre deux vecteurs.



Un lemme fondamental

Pour tous vecteurs \vec{u} et \vec{v} , dans tout repère orthonormé, si $\vec{u} = \binom{x}{y}$ et $\vec{v} = \binom{x'}{y'}$, alors :

$$\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2 = 2(xx' + yy').$$

Démonstration: Il s'agit d'un simple calcul. En effet, $\vec{u} + \vec{v} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$, donc :

$$\|\vec{u} + \vec{v}\|^2 = (x + x')^2 + (y + y')^2 = x^2 + x'^2 + 2xx' + y^2 + y'^2 + 2yy'.$$

Puisque $\|\vec{u}\|^2 = x^2 + y^2$ et $\|\vec{v}\|^2 = x'^2 + y'^2$, on en déduit le résultat.

Source: www.bibmath.net (Démonstrations capes - Produit scalaire et trigonométrie)

Expression du produit scalaire en fonction de la norme

Pour tous vecteurs \vec{u} et \vec{v} , on a :

$$\vec{u} \cdot \vec{v} = \frac{1}{2} \left(\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2 \right).$$

 $D\acute{e}monstration$: Si $\vec{u}=\vec{0}$ (le vecteur nul), la propriété est claire, car les deux termes de l'égalité sont nuls. Sinon, on se place dans un repère orthonormé direct (O,\vec{i},\vec{j}) tel que $\vec{i}=\frac{\vec{u}}{\|\vec{u}\|}$.

Dans ce repère, les coordonnées de \vec{u} et \vec{v} sont respectivement

$$\vec{u} = \begin{pmatrix} \|\vec{u}\| \\ 0 \end{pmatrix} \text{ et } \vec{v} = \begin{pmatrix} \|\vec{v}\|\cos(\theta) \\ \|\vec{v}\|\sin(\theta) \end{pmatrix},$$

où $\theta = (\vec{u}, \vec{v})$, l'angle formé par les deux vecteurs.

D'après le lemme fondamental, en calculant dans ce repère :

$$\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2 = 2(\|\vec{u}\| \cdot \|\vec{v}\| \cos(\theta)) = 2\vec{u} \cdot \vec{v}.$$

Expression du produit scalaire dans un repère orthonormal

Pour tous vecteurs \vec{u} et \vec{v} , dans tout repère orthonormé, si $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors :

$$\vec{u} \cdot \vec{v} = xx' + yy'.$$

Démonstration: C'est une conséquence immédiate des deux propositions précédentes.

Application pour trouver la mesure d'un angle

Reprenons les vecteurs de l'exemple précédent : $\overrightarrow{u} {5 \choose -2}$ et $\overrightarrow{v} {1 \choose 7}$.

Nous avons vu que:

$$\overrightarrow{u} \cdot \overrightarrow{v} = -9.$$

Or,

$$\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \times \cos(\overrightarrow{u}, \overrightarrow{v})$$

$$= \sqrt{5^2 + (-2)^2} \times \sqrt{1^2 + 7^2} \times \cos(\overrightarrow{u}, \overrightarrow{v})$$

$$= \sqrt{29} \times \sqrt{50} \times \cos(\overrightarrow{u}, \overrightarrow{v})$$

$$= 5\sqrt{58}\cos(\overrightarrow{u}, \overrightarrow{v}).$$

Ainsi,

$$-9 = 5\sqrt{58}\cos(\overrightarrow{u}, \overrightarrow{v})$$
,

soit:

$$\cos(\vec{u}, \vec{v}) = -\frac{9}{5\sqrt{58}} \approx -0.236351579148.$$

On en déduit alors :

$$(\overrightarrow{u}, \overrightarrow{v}) \approx 104^{\circ}$$
.

Propriétés du produit scalaire

1. Le produit scalaire est commutatif:

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
.

2. Le produit scalaire est distributif par rapport à l'addition de deux vecteurs :

$$\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}.$$

3. Le produit scalaire est distributif par rapport à la multiplication par un scalaire (par un réel) :

$$(m\vec{u}) \cdot (n\vec{v}) = mn \times (\vec{u} \cdot \vec{v}).$$

Exercices

1. Soit *ABCD* un carré de côté *a*. Calculer les produits scalaires :

$$p_1 = \overrightarrow{AB} \cdot \overrightarrow{AC}, \quad p_2 = \overrightarrow{AB} \cdot \overrightarrow{BC}, \quad p_3 = \overrightarrow{AB} \cdot \overrightarrow{CD}, \quad p_4 = \overrightarrow{AD} \cdot \overrightarrow{DB}.$$

2. Soit *A* et *B* deux points tels que *AB* = *a*. On note *I* le milieu de [*AB*] et *J* le symétrique de *B* par rapport à *A*. Calculer les produits scalaires :

$$\overrightarrow{AB} \cdot \overrightarrow{AI}$$
, $\overrightarrow{IA} \cdot \overrightarrow{IB}$, $\overrightarrow{BA} \cdot \overrightarrow{BJ}$.

3. Soit ABC un triangle isocèle en A tel que AB = AC = 5 et BC = 4. Soit I le milieu de [BC]. Calculer le produit scalaire :

$$\overrightarrow{BA} \cdot \overrightarrow{BC}$$
.

- 4. Soit A, B, C trois points tels que AB = 4, AC = 6 et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 12$. Déterminer la mesure en radians de l'angle géométrique \overrightarrow{BAC} .
- 5. Soit ABCD un carré de côté a. On note I le milieu de [AB] et J le milieu de [BC]. Faire une figure codée en prenant [AB] comme « horizontale », A en bas à gauche, B à droite, C et D au-dessus de [AB]. Montrer que $(AJ) \perp (DI)$.
- 6. Soit \vec{u} et \vec{v} deux vecteurs tels que $||\vec{u}|| = 1$, $||\vec{v}|| = 3$ et $\vec{u} \cdot \vec{v} = -2$. Calculer $||\vec{u} + \vec{v}||$.
- 7. Soit \vec{u} et \vec{v} deux vecteurs tels que $\|\vec{u}\| = 5$, $\|\vec{v}\| = 4$ et $\vec{u} \cdot \vec{v} = 2$. Déterminer k tel que les vecteurs $\vec{u} + \vec{v}$ et $2\vec{u} + k\vec{v}$ soient orthogonaux.
 - On rédigera ainsi : « $\vec{u} + \vec{v}$ et $2\vec{u} + k\vec{v}$ sont orthogonaux si et seulement si ... ».
- 8. Soit \mathscr{C} un cercle de diamètre [AB], C un point quelconque de \mathscr{C} et D un point quelconque de [AB]. La droite passant par D et perpendiculaire à [AB] coupe [AC] en E. Démontrer que l'on a : $\overrightarrow{AD} \times \overrightarrow{AB} = \overrightarrow{AE} \cdot \overrightarrow{AC}$.

 Indication : calculer de deux manières différentes le produit scalaire $\overrightarrow{AE} \cdot \overrightarrow{AB}$.
- 9. Soit ABCD un parallélogramme. On pose AB = a et AD = b. Calculer $\overrightarrow{AC} \cdot \overrightarrow{BD}$ en fonction de a et b.
- 10. Soit ABCD un parallélogramme. Démontrer que l'on a :

$$AC^2 + BD^2 = 2(AB^2 + AD^2).$$

11. Soit ABC un triangle équilatéral de côté a > 0. On note G le point défini par l'égalité vectorielle

$$\overrightarrow{AG} = \frac{3}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC}$$
.

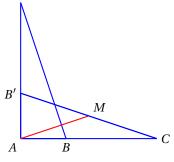
Faire une figure en prenant [AB] « horizontale », A à gauche de B, C « au-dessus » de [AB]. Placer alors le point G sur la figure.

Calculer AG en fonction de a sans introduire de nouveaux points.

12. ABB' et ACC' sont deux triangles rectangles isocèles en A. On a AB = AB' = 1 et AC = AC' = 3. M est le milieu de [B'C]. On se place dans le repère orthonormé C'

$$(A; \overrightarrow{AB}, \overrightarrow{AB'}).$$

- (a) i. Déterminez les coordonnées des points de la figure, puis des vecteurs \overrightarrow{AM} et $\overrightarrow{BC'}$.
 - ii. Déduisez-en que (AM) et (BC') sont perpendiculaires.
- (b) La perpendicularité des droites (AM) et (BC') reste-t-elle vraie, quelle que soit la longueur commune à AC et AC'?



Formules d'addition des fonctions trigonométriques

Pour tous réels α et β , on a :

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta,$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha.$$

Démonstration: Dans un repère orthonormé direct (O, \vec{i}, \vec{j}) , on considère deux vecteurs unitaires \vec{u} et \vec{v} tels que $(\vec{i}, \vec{u}) = \beta$ et $(\vec{i}, \vec{v}) = \alpha$. Les coordonnées de \vec{u} et \vec{v} sont respectivement $\vec{u} = (\cos \beta, \sin \beta)$ et $\vec{v} = (\cos \alpha, \sin \alpha)$.

En utilisant l'expression du produit scalaire dans un repère orthonormé :

$$\vec{u} \cdot \vec{v} = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$$

D'autre part, par définition du produit scalaire :

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos(\vec{u}, \vec{v}) = \cos(\vec{u}, \vec{v}).$$

L'angle entre \vec{u} et \vec{v} , noté (\vec{u}, \vec{v}) , peut être déterminé à partir des angles formés par \vec{u} et \vec{v} avec \vec{i} :

$$(\vec{u}, \vec{v}) = (\vec{i}, \vec{v}) - (\vec{i}, \vec{u}).$$

En d'autres termes, l'angle (\vec{u}, \vec{v}) correspond à $\alpha - \beta$, car $(\vec{i}, \vec{v}) = \alpha$ et $(\vec{i}, \vec{u}) = \beta$.

On en déduit le premier résultat :

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta.$$

Pour la seconde formule, on utilise la relation $\sin(x) = \cos(\frac{\pi}{2} - x)$:

$$\sin(\alpha - \beta) = \cos\left(\frac{\pi}{2} - (\alpha - \beta)\right) = \cos\left(\frac{\pi}{2} - \alpha + \beta\right).$$

En développant :

$$\sin(\alpha - \beta) = \cos\left(\frac{\pi}{2} - \alpha\right)\cos(\beta) - \sin\left(\frac{\pi}{2} - \alpha\right)\sin(\beta).$$

Enfin, comme $\cos\left(\frac{\pi}{2} - x\right) = \sin x$ et $\sin\left(\frac{\pi}{2} - x\right) = \cos x$, on obtient :

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \sin(\beta)\cos(\alpha).$$