analyse:integrales:volume_de_revolution

Volume de révolution

La cubature d'un solide est le calcul de son volume. On se limite aux solides de révolution d'axe $d$, à savoir des solides engendrés par la rotation d'une surface plane autour de la droite $d$.

L'idée est la même que lorsque l'on cherchait l'aire délimitée par le graphe d'une fonction. On subdivise l'intervalle [a,b] en n intervalles de même longueur $\frac{b-a}{n}$ et on pose $x_i=a+i\cdot\frac{b-a}{n}$ avec $x_0=a$ et $x_n=b$.

Pour chaque $0\leq i\leq n-1$, on considère le rectangle ayant comme base le segment $[x_i ; x_{i+1}]$ et comme hauteur $f(x_i)$. Chacun de ces rectangles, lorsqu'il tourne autour de l'axe $\mathrm{O} x,$ engendre un cylindre très fin de volume $\mathrm{V}_{i}=\pi\left(f\left(x_{i}\right)\right)^{2} \Delta x_{i}$ où $\Delta x_{i}=x_{i+1}-x_{i}$.

Finalement, par passage à la limite, on obtient : $$\mathrm{V}=\lim _{n \rightarrow+\infty} \sum_{i=0}^{n-1} \mathrm{~V}_{i}=\lim _{n \rightarrow+\infty} \sum_{i=0}^{n-1} \pi\left(f\left(x_{i}\right)\right)^{2} d x_{i}=\pi \lim _{n \rightarrow+\infty} \sum_{i=0}^{n-1}\left(f\left(x_{i}\right)\right)^{2} d x_{i}$$ Dès lors, si l'on considère une rotation autour de l'axe $x$ d'une surface plane délimitée par le graphe de l'équation $y = f(x)$, avec $f$ intégrable sur $[a, b]$, et les droites d'équations $x = a$ et $x = b$, le volume du solide de révolution se calcule par : \[V = \pi \int_a^b f^2(x) \ \textrm{d}x\]

Soient deux fonctions \(f\left( x \right)\) et \(g\left( x \right)\) continues, positives sur un intervalle \(\left[ {a,b} \right]\) avec \(g\left( x \right) \le f\left( x \right)\). La formule générale pour calculer le volume V d'un solide de révolution engendré par la rotation d'une région située entre deux courbes $f(x)$ et $g(x)$ entre $x=a$ et $x=b$ autour d'un axe des abscisses est donnée par : \[\boxed{V=\pi \int_{a}^{b} f^2(x)-g^2(x) \ \textrm{d}x}\]

Source Tikz de la figure

Source Tikz de la figure

\documentclass[border=10pt]{standalone} 
\usepackage{tikz}
\usetikzlibrary{decorations.markings}
% Declare nice sphere shading: http://tex.stackexchange.com/a/54239/12440
\pgfdeclareradialshading[tikz@ball]{ball}{\pgfqpoint{0bp}{0bp}}{%
 color(0bp)=(tikz@ball!0!white);
 color(7bp)=(tikz@ball!0!white);
 color(15bp)=(tikz@ball!70!black);
 color(20bp)=(black!70);
 color(30bp)=(black!90)}
\makeatother
\begin{document}
\begin{tikzpicture}[xscale=2]
\pgfmathsetmacro\startx{0.5};
\pgfmathsetmacro\endx{2.2};
\pgfmathsetmacro\domw{\endx-\startx};
\pgfmathsetmacro\cyln{5};   % number of disks
\pgfmathsetmacro\cylw{\domw/\cyln};  % width of disks
\pgfmathsetmacro\smoothn{60};   % number of disks in "smooth" volume
\pgfmathsetmacro\smoothw{\domw/\smoothn};
\pgfmathsetmacro\starty{-0.4*\startx*\startx*\startx+0.5*\startx*\startx+3}
\pgfmathsetmacro\startby{1.47941 - 0.558824*\startx}
\pgfmathsetmacro\endy{-0.4*\endx*\endx*\endx+0.5*\endx*\endx+3};
\pgfmathsetmacro\endby{1.47941 - 0.558824*\endx};
\begin{scope}[xshift=0cm]
%\draw[black, very thin,<->] (-0.5,0) -- (3,0);
\draw[black, very thin,<->] (0,-3.5) -- (0,3.5);
\draw[black, very thin] (\startx,-1)--(\startx,-1.2);
\draw[black, very thin] (\endx,-1)--(\endx,-1.2);
\node[below] at (\startx,-1.2) {$a$};
\node[below] at (\endx,-1.2) {$b$};
\fill[domain=\startx:\endx,smooth,variable=\x,cyan,opacity=0.4] plot ({\x},{-0.4*\x*\x*\x+0.5*\x*\x+3})--(\endx,0.25)--(\startx,1.2);
\draw[domain=\startx:\endx,smooth,variable=\x, ultra thick, purple] plot ({\x},{-0.4*\x*\x*\x+0.5*\x*\x+3}) node[above right] {$f(x)$};
\draw[ultra thick, orange] (\startx,1.2) -- (\endx,0.25) node[right] {$g(x)$};
\draw[-latex,black,ultra thick] (0,-1)--(3,-1);
\node[left] at (0,-1) {$0$};
\draw[decoration={markings, mark=at position 0.125 with {\arrow{>}}}, postaction={decorate},thick] (2.5,-1) ellipse (0.1 and 0.5);
\end{scope}
\begin{scope}[xshift=4.5cm]
%\draw[black, very thin,<->] (-0.5,0) -- (3,0);
\draw[black, very thin,<->] (0,-5.5) -- (0,3.5);
\draw[fill=cyan] (\startx,\starty) to[out=315, in=45,looseness=0.3] (\startx,-\starty-2) to[out=135, in=225,looseness=0.3] (\startx,\starty);
%\draw[black, very thin] (0,0) -- (\startx,0);
%\draw[black, very thin] (\startx,0)--(\startx,-0.2);
%\node[below] at (\startx,-0.2) {$a$};
\draw[-latex,black,ultra thick] (0,-1)--(3,-1);
% inner tube
\foreach \i [count=\int] in {\cyln,...,0} {
  \pgfmathsetmacro\tx{\startx+\i*\cylw};    % startx of shell
  \pgfmathsetmacro\ty{-0.4*\tx*\tx*\tx+0.5*\tx*\tx+3};
  \pgfmathsetmacro\by{1.47941 - 0.558824*\tx};
  \fill[cyan,draw=gray,thin] (\tx,\by)--(\tx+\cylw,\by) to[out=225, in=135,looseness=0.3] (\tx+\cylw,-1*\by-2)--(\tx,-1*\by-2) to[out=135, in=225,looseness=0.3] (\tx,\by);
  \begin{scope}
      \clip (\tx,\by)--(\tx+\cylw,\by) to[out=225, in=135,looseness=0.3] (\tx+\cylw,-1*\by-2)--(\tx,-1*\by-2) to[out=135, in=225,looseness=0.3] (\tx,\by);
      \begin{scope} 
          \shade [ball color=white, opacity=0.7] (\tx,-1) circle (1.3*\by+1);
      \end{scope}
  \end{scope}
  \fill[cyan,draw=gray,thin](\tx,\ty)--(\tx+\cylw,\ty) to[out=315, in=45,looseness=0.3] (\tx+\cylw,-1*\ty-2)--(\tx,-1*\ty-2) to[out=45, in=315,looseness=0.3] (\tx,\ty);
  \begin{scope}
        \clip (\tx,\ty)--(\tx+\cylw,\ty) to[out=315, in=45,looseness=0.3] (\tx+\cylw,-1*\ty-2)--(\tx,-1*\ty-2) to[out=45, in=315,looseness=0.3] (\tx,\ty);
        \begin{scope} 
            \shade [ball color=white, opacity=0.7] (\tx,-1) circle (1.3*\ty+1);
        \end{scope}
    \end{scope}
}
%\draw[black, very thin] (0,0) -- (\startx+0.3,0);
%\draw[black, very thin] (\startx,0)--(\startx,-0.2);
%\node[below] at (\startx,-0.2) {$a$};
\draw[-,black,ultra thick] (0,-1)--(\startx+0.3,-1);
\node[left] at (0,-1) {$0$};
\fill[cyan] (\startx,\starty) to[out=315, in=45,looseness=0.3] (\startx,-\starty-2) --(\startx,-\startby-2) to[out=45, in=315,looseness=0.3] (\startx,\startby)--(\startx,\starty);
%\draw[thick,purple] (\startx,\starty)--(\startx-0.2,\starty)--(\startx-0.2,-1)--(\startx,-1);
%\draw[thick,purple] (\startx-0.2,\startby+0.5*\starty-0.5*\startby)--(\startx-0.4,\startby+0.5*\starty-0.5*\startby);
%\node[left,text width=3cm, align=right,purple] at (\startx-0.6,\startby+0.5*\starty-0.5*\startby) {Outer radius\\ $f(x)+1$};
%\draw[thick,orange] (\startx,\startby)--(\startx-0.4,\startby)--(\startx-0.4,-1)--(\startx,-1);
%\draw[thick,orange] (\startx-0.4, 0.5*\startby)--(\startx-0.6,0.5*\startby);
%\node[left,text width=3cm, align=right,orange] at (\startx-0.6,0.5*\startby) {Inner radius $g(x)+1$};
\draw[black, very thin] (\startx,-1)--(\startx,-1.2);
\node[below] at (\startx,-1.2) {$a$};
\end{scope}
\begin{scope}[xshift=8.5cm]
%  \draw[black, very thin,<->] (-0.5,0) -- (3,0);
  \draw[black, very thin,<->] (0,-5.5) -- (0,3.5);
  \draw[-latex,black,ultra thick] (0,-1)--(3,-1);
  % left flat face
  \draw[fill=cyan] (\startx,\starty) to[out=315, in=45,looseness=0.3] (\startx,-\starty-2) to[out=135, in=225,looseness=0.3] (\startx,\starty);
  \begin{scope}
    \clip [domain=\startx:\endx,smooth,variable=\x] plot ({\x},{1.47941 - 0.558824*\x}) to[out=315, in=45,looseness=0.3] (\endx,-1*\endby-2) plot[domain=\endx:\startx,smooth,variable=\x] ({\x},{-3.47941 + 0.558824*\x}) to[out=135, in=225,looseness=0.3] (\startx,\startby);
    \begin{scope}[]
        \shade [ball color=white, opacity=0.7] (1.5,-1) circle (3);
    \end{scope}
  \end{scope}
  \draw[-,black,ultra thick] (0,-1)--(\startx+0.3,-1);
  \node[left] at (0,-1) {$0$};
%  \draw[black, very thin] (0,0) -- (\startx+0.3,0);
%  \draw[black, very thin] (\startx,0)--(\startx,-0.2);
%  \node[below] at (\startx,-0.2) {$a$};
  \fill[cyan] (\startx,\starty) to[out=315, in=45,looseness=0.3] (\startx,-\starty-2) --(\startx,-\startby-2) to[out=45, in=315,looseness=0.3] (\startx,\startby)--(\startx,\starty);
  \draw[thin] (\startx,-\startby-2) to[out=45, in=315,looseness=0.3] (\startx,\startby) to[out=225, in=135,looseness=0.3] (\startx,-\startby-2);
  \draw[domain=\startx:\endx,smooth,variable=\x, fill=cyan] plot ({\x},{-0.4*\x*\x*\x+0.5*\x*\x+3}) to[out=300, in=70,looseness=0.3] (\endx,-1*\endy-2) plot[domain=\endx:\startx,smooth,variable=\x] ({\x},{0.4*\x*\x*\x-0.5*\x*\x-5}) to[out=45, in=315,looseness=0.3] (\startx,\starty);
  \begin{scope}
        \clip [domain=\startx:\endx,smooth,variable=\x] plot ({\x},{-0.4*\x*\x*\x+0.5*\x*\x+3}) to[out=300, in=70,looseness=0.3] (\endx,-1*\endy-2) plot[domain=\endx:\startx,smooth,variable=\x] ({\x},{0.4*\x*\x*\x-0.5*\x*\x-5}) to[out=45, in=315,looseness=0.3] (\startx,\starty);
        \begin{scope}[]
            \shade [ball color=white, opacity=0.7] (0.8,-1) circle (4.5);
        \end{scope}
    \end{scope}
\draw[black, very thin] (\startx,-1)--(\startx,-1.2);
\node[below] at (\startx,-1.2) {$a$};
\end{scope}
\end{tikzpicture}
\end{document}

Exemple

\begin{align*} V &= \pi \int_1^4 {\left( {{\left( {\sqrt{x}} \right)^2} - {1^2}} \right)dx} \\ &= \pi \int_1^4 {\left( x - 1 \right)dx} \\ &= \pi \left. {\left( {\frac{{x^2}}{2} - x} \right)} \right|_1^4 \\ &= \pi \left( {\left( {\frac{{4^2}}{2} - 4} \right) - \left( {\frac{{1^2}}{2} - 1} \right)} \right) \\ &= \frac{9\pi}{2} \end{align*} source Figure 6.2.12

Exemple

Le volume du solide de révolution engendré par la rotation de la région du plan délimitée par les équations $y=x^2$ et $y=\sqrt{x}$ est donnée par : \[\begin{aligned}[t] V = \pi \int_0^1 {\left( {{{\left[ {\sqrt x } \right]}^2} - {{\left[ {{x^2}} \right]}^2}} \right)dx} &= \pi \int_0^1 {\left( {x - {x^4}} \right)dx}\\ &= \pi \left. {\left( {\frac{{{x^2}}}{2} - \frac{{{x^5}}}{5}} \right)} \right|_0^1\\ &= \pi \left( {\frac{1}{2} - \frac{1}{5}} \right) = \frac{{3\pi }}{{10}} \end{aligned}\]

  • analyse/integrales/volume_de_revolution.txt
  • Dernière modification : 2025/03/18 22:30
  • de Frédéric Lancereau